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Abstract. We investigate algorithms, applications, and complexity issues for the single-source un- 
capacitated (SSU) version of the minimum concave-cost network flow problem (MCNFP). We present 
applications arising from production planning, and prove complexity results for both global and local 
search. We formally state the local search algorithm of Gallo and Sodini [5], and present alternative 
local search algorithms. Computational results are provided to compare the various local search 
algorithms proposed and the effects of initial solution techniques. 
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1. Introduction 

The single-source uncapacitated (SSU) version of the minimum concave-cost 
network flow problem (MCNFP) requires establishing a minimum cost flow from 
a single generating source to a set of sinks, through a directed network. All arcs 
are uncapacitated, indicating that the entire source flow can pass through any arc. 
The SSU MCNFP can be stated formally as follows: 

Given a directed graph G = (N, A) consisting of a set N of IZ nodes and a set A 
of m ordered pairs of distinct nodes called arcs, coupled with an n-vector 
(demand vector) d = (di) with d, < 0 and di 3 0, i = 2, . . . , n, and a concave cost 
function for each arc, cjj(xij), then solve 

global min c cij(xij) 
(i,j)EA 

subject to 

c. .~,~-(,~~~xie=di, V~EN (1) 
(k,i)EA 1, 

and 

OSXij) V(i, j) E A. (2) 

All constraints and demands are assumed to be integral. The requirement that 
only d, < 0 corresponds to the single source case. The lack of an upper bound for 
the xii gives rise to the uncapacitated case. 
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The SSU MCNFP is a concave optimization problem over a convex poly- 
hedron. This indicates that if a finite optimal solution exists, then there exists an 
extreme point of the feasible domain that is optimal [3]. Extreme points of the 
polyhedron correspond to basic feasible solutions in the simplex tableau [l]. The 
concave case differs from the convex case in that a local optimum need not be a 
global optimum. For the SSU case an extreme flow (corresponding to an extreme 
point) is an arborescence [21]. The leaves of the solution tree correspond to a 
subset of the sink nodes. The integral constraints and demands give rise to 
extreme flows of integral value. 

A SSU MCNFP has a finite optimal solution if it contains no negative cost 
cycles, and all sinks are reachable from the source (i.e., there exists a directed 
path from the source to each sink). The latter requirement is necessary for the 
existence of a feasible flow. The presence of a negative cost cycle would imply an 
unbounded negative cost solution; the absence of such a cycle guarantees a finite 
solution [9]. Unless stated otherwise, we consider in this paper cases of the SSU 
MCNFP with arc flow costs that are non-negative, nondecreasing and concave. 
This property of objective functions accurately reflects cost functions for models 
of real world problems in areas such as production planning and transportation 
analysis. For example, in a production setting decreasing concave arc cost 
functions would exclude the influence of demand on production. 

The SSU MCNFP arises naturally in numerous application areas. For produc- 
tion and inventory planning models, the single source can indicate a starting point 
in time for the model. The overall flow indicates the total production for the time 
window of the model, and the sinks represent intermediate production require- 
ments for the time window. This approach is reflected in the following three 
production and inventory planning models. 

The basic model in this area is the Wagner-Whitin model for a production and 
inventory system with no backlogging of demand [16], [17], [21], [22]. The 
variables for the model are: 

1. P,(x,) -cost of producing xi units in period i, 
2. ZZj(Zi) - the inventory holding costs in period i, 
3. n - number of time periods, 
4. yi -market requirements for time period i, 
5. xi - amount produced in period i, 
6. Zi - inventory in period i, Zi = ChzI (xk - rk), 
7. Production nonnegative corresponds to xi 3 0, 
8. No backlogging unsatisfied demand corresponds to Zi 2 0. 

The resulting model becomes 

subject to 
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2 'i = 2 'i 

-xi - Iip1 +li=-ri i=l,...,n 

xiao, Ii20, I,=O, I,=O. 

The network is depicted in Figure 1 for a three time period model. It is an 
acyclic, single source, multiple sink, uncapacitated network. The flows from S to i 
correspond to production (xi) in time period i, while the flows from i to j, i < j 
correspond to inventory (Zi). 

The effect of allowing backlogging of demand on the previous model is 
explored in [20], [22]. H ere the inventory constraints can become negative 
(Ii 2 -a, a 2 0), indicating demands in a time period can be satisfied in a later 
period. The resulting extended network is in Figure 2. Flow on a backward arc 
corresponds to backlogged demand. 

Both of the previous models assumed a single production facility. Generalizing 
the model to a product which requires a series of processes, each process 
performed in a separate facility, results in a multi-echelon economic lot size 
model [22]. The network for a three facility, three time period model (without 
backlogged demand) is shown in Figure 3. Facility 0 is the origin of the material 
required for processing. Again, flow from (I, i)+ (I, j) corresponds to production 
in time period I at facility j and (i, I)+ ( j, I) corresponds to inventory in period i 
at facility 1. 

Concave cost functions for the previous models arise from start-up costs, such 
as facilities and equipment, and economies of scale, reflected in storage require- 
ments, shipping, and material purchases. Other areas given rise to this class of 

Fig. 1. A simple production model 
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Fig. 2. Production model with backlogged demand. 

Fig. 3. Multi-echelon production model. 

problems include transportation and shipping and communications. Also, many 
known NP-complete problems, such as 3-SAT, Minimum Cover, Vertex Cover, 
etc., can be formulated as SSU MCNFP. 

2. Complexity 

The general SSU MCNFP is known to be NP-hard. This follows immediately 
from this class of problems containing the “Steiner Tree in Graphs” problem 
[6], [9]. This result is based on arc costs that correspond to fixed arc weights. 
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In this section we prove that the SSU MCNFP is NP-hard for cases 

1. With other types of arc cost functions, 
2. For acyclic networks where all nodes have bounded total degrees less than 

or equal to three. 

In addition, we prove that the problem of finding a strict local optimum, i.e., a 
feasible solution that has a lower cost than all solutions in a specified neighbor- 
hood, for SSU MCNFP is NP-hard if 3-SAT with unique solution is NP-hard. 

The following transformation demonstrates that SSU MCNFP is NP-hard for 
cases involving objective functions other than the fixed-charge case (cii(xii > 0) = 
Wij 2 0). 

.Consider the 3 Dimensional Matching (3DM) problem that is known to be 
NP-complete [6]: 

INSTANCE. Set M c W x X x Y, where W, X, and Y are disjoint sets having 
the same number q of elements. 

QUESTION. Does M contain a matching, i.e. a subset M’ c M such that 
IM’I = q and no two elements of M’ agree in any coordinate? 

We construct the following flow problem: 

1. Create a single source vertex S with source flow d, = -3 * q. 
2. Create n = ] M ] transshipment nodes Mi and arcs (S, Mi). These correspond 

to the elements ( Wj, X,, Yl) for some i, k, and I 3 1 G i, k, I s q. 
3. Create3*qsinksW, ,..., W,,X, ,..., X,,Y1 ,..., Y,.Eachsinkhasflow 

requirement 1 (di = 1). For each Mi add arcs (Mi, Wj), (Mj, X,), and 
(Mi, Y!), where n/r, = (Wj, X,, Y,). 

4. All arcs are uncapacitated. 
5. All arcs have cost zero, except the arcs originating at the source. 

The resulting network is pictured in Figure 4. Consider the following cost 
functions: 

1. Start-up costs: This extends the fixed-charge case: cij(0) = 0, cij(x) = a + 
(b*x), a>o. 

2. Cost functions satisfying: ~~~(0) = 0, c,(x + y) < cjj(x) + cij( y), x, y > 0. This 
case includes all strictly concave functions, and a number of nonconcave, 
nonconvex functions. 

For case 1, consider when all arcs (S, M,) have cost 1 for nonzero flow. Then the 
optimal cost of the network problem is q if and only if the 3DM instance has 
answer yes. In general, if the cost on each arc is cij(x) = a + bx, then the optimal 
cost of the network problem is (q * a) + (b * 3 * q) if and only if the 3DM instance 
has answer yes. In both cases the result follows by noting that if flow is split across 
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Fig. 4. Flow resulting from 3DM transformation. 

more than q of the outgoing source arcs, then we incur additional startup costs. In 
addition, each Mi has a directed path to exactly 3 sinks (one in each of IV, X, and 
Y), implying at least q of the (S, Mi) have nonzero flow. 

For case 2, consider where the cost of all (S, Mi) are identical and satisfy the 
specified constraint. Here we find that the optimal cost of the network problem is 
EYE1 ~~,~~(3) if and only if the 3DM instance has answer yes. This follows from the 
observation that if no split of the flow occurs, the cost is as specified above and 
the arcs of the flow establish the solution to the 3DM problem. If any split occurs, 
then the cost increases. 

For the case with no split: 
IMI 

FIBWCOST = x ~,,,~(xs,M,) = f: c,,Mi(3) . 
i=l i=l 

For the case with the flow split for a single arc (without loss of generality flow 
on (S, Mq) is split onto arc (S, M,,,)): 

WI 
FLOWCOST = 2 cS+&s,M,) 

i=l 

zz 
(z; CS,MiW) + %M$%,M,) + CS,M*+l(XS,Mq+l) 

> (1s; csJ4j3)) + CS,MqW = z$l CS,MiW * 
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Fig. 5. Bounded degree constructors. 

Noting that the above transformation from 3DM is a polynomial transformation 
indicates that the SSU MCNFP is NP-hard, even for cases with arc costs other 
than fixed-charge. 

NP-hardness results can be extended for each of the cost function cases to 
networks of bounded arc degree (both in-degree and out-degree). This can be 
seen by noting that any network can be converted to a network with all nodes of 
total degree less than or equal to three simply by using the constructors depicted 
in Figure 5. Constructor A is used to reduce the in-degree of a node, while B 
reduces the out-degree. All new arcs added have associated a zero cost. The 
conversion process can be viewed iteratively as follows: 
Suppose node X has total degree n > 2. 

WHILE degree(X) > 2 
IF in.degree(X) > 1 

(1) Pair the incoming arcs, resulting in ( 1 in’degF(x) ] ) pairs ai, b, 
(2) Replace each arc pair with a type A constructor 

IF out.degree(X) > 1 
(1) Pair the outgoing arcs 
(2) Replace each arc pair with a type B constructor. 

The process terminates in at most [log2(y1)1 steps. The number of added nodes 
is O(n), the number of added arcs is, also, O(n). A sample transformation is 
provided in Figure 6. 

Fig. 6. Sample degree reduction transformation. 
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Each of the above results have addressed the complexity of locating a globally 
optimal solution for the SSU MCNFP. Here we investigate the complexity of 
checking if a solution is locally optimal, and of finding a local optimum for a SSU 
MCNFP. Before we can investigate these problems we must establish the criteria 
for a local optimum. For the MCNFP, the standard marginal definition of local 
optimality (i.e., rerouting a small portion of flow [19]) is not satisfactory, as some 
cost functions, e.g., lixed costs (f(0) = 0, f(x > 0) = c > 0), result in all extreme 
flows being locally optimal. We use the definition of a local optimum as defined by 
Gallo and Sodini [5]. Here, a feasible solution is a local optimum if its objective 
value is less than or equal to all of its neighboring vertices. Gallo and Sodini also 
demonstrate that the problem of checking if a feasible solution for SSU MCNFP 
is a local optimum is in P. This result indicates that the problem of checking if a 
solution is a strict local optimum is in P. The complexity of finding a local 
optimum for SSU MCNFP is an open problem. Using the following 3-SAT 
transformation, originally developed in [8], we can establish a result for the 
problem of finding a strictly local optimum. 

The transformation from 3-SAT is as follows: 

INSTANCE. Collection C = {c,, c2, . . . , cm} of clauses on a finite set U of 
variables such that ]ci] = 3 for 1~ i =G m. 

QUESTION. Is there a truth assignment for U that satisfies all the clauses in C? 

We construct the following flow problem: 
Let S denote the source vertex. 

1. Add (S,v,),tli=l,. . . , k where k = IV1 is the number of distinct variables 
in the 3-SAT instance. 

2. Add (Vi, T,), (vi, Fi), Vi. This corresponds to a TRUE or FALSE assign- 
ment for each variable. 

3. Add ( Ti, FC,), (Fj, FC,), tli. This forces a choice at each node. 
4. The remaining arcs and nodes depend on the structure of the 3-SAT clauses. 

For example, if Ci = c, A cY A c, we add nodes ti,, fi2, fi3 and arcs (TX, ti,), 
( TY, tiz), (T, , ti3). If c, were negated we would add arc (Fx , t,i) in place of 
(TX, t,i). For the case where Ci = c, A (cY v cz) we would add nodes ti,, ti, 
and arcs (TX, ti,), ( Ty , tiz), (T, , ti2). The addition of only two new nodes 
results from the choice of the conjunction in forcing a variable’s value of 
TRUE or FALSE. All other cases are handled in a similar manner. Figure 7 
demonstrates instances of this subset of the transformation. 

5. Let ITI denote the number of t nodes added at step 4. Let IV] denote the 
number of distinct variables occurring in clauses. Then set the source flow to 
(T] + IV]. IV] units of flow are used to force the assignment of TRUE or 
FALSE to each variable. ] TI units of flow are used to force the satisfiability 
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1 1 1 

Fig. 7. Transformation of the clauses. 

of each clause. This corresponds to each FC, and each tij being a sink with 
requirement 1. 

6. All arc flow costs are zero except for (Vi, Ti) and (y, Fj) which have cost 
zero if flow equals zero and one if flow is greater than zero. 

The resulting network, presented in Figure 8, has optimal flow cost /VI if and only 
if the 3-SAT instance has a satisfying assignment. This can be seen by noting that 
any feasible flow has cost greater than or equal to (VI due to the FC, sinks forcing 
a unit of flow through each Vi. If the additional flow necessary to satisfy the sinks 

1 1 1 ‘1’ 

Fig. 8. Network resulting from 3-SAT transformation 
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resulting from the clauses (tij) can be met without taking a path from Vi to Tj or Fi 
which currently has zero flow, then the cost of the flow remains at IV1 . In this 
case, the assignment ui = TRUE if the flow on (Vi, Ti) is greater than zero, else 
FALSE, results in a satisfying assignment for the 3-SAT instance. If no satisfying 
assignment exists, we see it is necessary to have some i such that both (Vi, Ti) and 
(Vi, Fi) have nonzero flows. This implies the optimal network flow has cost 
greater than IT/I. 

We use the following properties of the 3-SAT transformation: 

1. If a feasible flow is not a global optimum, then it is not a strict local 
optimum. This results from a nonoptimal flow having some variable with 
flow on both (vi, Ti) and (vi, Fi). An adjacent solution of equal cost can be 
obtained by altering the flow to the corresponding FC, sink. 

2. If the 3-SAT instance has a unique solution, then this global optimum is a 
strict local optimum. 

These combined facts indicate that if 3-SAT with unique solution is NP-hard, 
then the problem of finding a strict local optimum for SSU MCNFP is also 
NP-hard. Although the complexity of 3-SAT with unique solution is an open 
problem, Valient and Vazirani [15] prove that SAT with unique solution is 
NP-hard under randomized polynomial-time reductions. The existence of a 
parsimonious transformation from SAT to 3-SAT [6] carries the randomized 
result over to 3-SAT. Pardalos and Schnitger [ll] prove that checking strict local 
optimality for the indefinite case is NP-hard, indicating that finding a strict local 
optimum for this case is NP-hard. 

Few problems in the class SSU MCNFP have been identified as solvable in 
polynomial time. For many of the cases that are, the problem can be reformulated 
and solved as a shortest weighted path problem. This includes the single sink case 
[21]. For this problem, using the previously stated definition of a local optimum, 
any extreme solution is adjacent to all other extreme solutions. This implies a 
single local search test based on a shortest weighted path problem (as discussed in 
the next section) will locate a global optimum. The following results present 
shortest path reformulations of the Wagner-Whiten model for production and 
inventory systems, and the extension to allow backlogged demands. Both of these 
problems were stated formally in the previous (introduction) section. 

Figure 9 represents a state diagram for the Wagner-Whiten production model 
without a backlogged demand. Changing states in this model corresponds to 
forcing a specified flow on one of the (S, i) arcs of Figure 1. The candidate flow 
magnitudes correspond to R, = C!+ Ye where 1~ i sj G it. The state diagram is 
acyclic, corresponding to the fact that the flow requirements are met in the 
specified order rr, rZ, . . . , Y,. Being in state i indicates that all requirements up 
to, and including, ri have been met, and no other flows have been met. Moving 
from state i to state j, i > i, corresponds to moving R,+l,j units of flow across arc 
(8, i + l), then forwarding the excess flow (R,+l,j - ri+l) along arc (i + 1, i + 2), 
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Fig. 9. State diagram for Wagner-Whiten problem. 

(R,+l,j - ri+r - ric2) units along (i + 2, i + 3), etc. This formulation of the prob- 
lem indicates that there are 2”-” basic feasible solutions. This follows from all 
solutions terminating in state (node) n, and passing through any subset of the 
remaining states. The cost assigned to each arc is as follows (c’ = new costs, 
c = original arc costs): 

j-l 

c’(i, j) = cS,i+l(Ri+l,j) + C Cl,l+l(Rl+l,j) . 
l=i+l 

The resulting shortest path problem can be formulated and solved in O(n’) 
operations using a single source shortest weighted path algorithm for dense 
networks (e.g., Dijkstra’s algorithm). 

The corresponding formulation for the model with backlogged demand requires 
additional states. In this case, each state (j, k) reflects the maximum required 
flow currently satisfied, rk, and the arc from the source used to convey this flow, 
(S, j). Now a transition from state (jr, k,) to state (j2, k2) corresponds to forcing 
C”? [-k,+l r[ units of flow across arc (S, j2), where jr G k, < jz s k,. This flow 
represents Rk,+l,j,-l units of backlogged demand. The cost for arc flows in this 
state diagram are 

k,-I 

i2 

+ c Cl,l-l(Rk,+l,H>~ 
l=k1+2 

Nodes exist for the initial state (0,O) and all states (i, j) 3 1 s i c j s n, 
resulting in O(n*) nodes. Arcs exist for all valid transformations, ( jl, k,) to 
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(j2, k,) where j1 6 k, < jz 6 k,, resulting in a dense network. The resulting 
shortest path formulation and solution requires O(n”) operations, with the 
optimal solution corresponding to the minimum shortest weight path from (0,O) 
to any (i, n), i = 1, . . . , n. 

3. Local Search Algorithms 

Because the global search problem for the SSU MCNFP is iVP-hard, efficient 
algorithms exist only for highly structured subcases, e.g., the production models 
presented in Section 1. Recent work by Thach [14] addressed the circuitless case 
by decomposing the problem into linear programs and developing successive 
approximations to the concave objective function. The send-and-split method [4] 
applies to the uncapacitated case in general. It employs dynamic programming, 
and the resulting processing time is exponential only in the number of sources and 
sinks. Numerous general concave enumeration techniques can be applied to this 
problem. A recent summary can be found in [lo]. 

In order to avoid the excessive computations required by exact global search, 
we investigate the performance of local search for the SSU MCNFP. Work by 
Gallo and Sodini [5] indicates that even though the complexity of local search for 
this problem is unknown, preliminary computational results are encouraging. We 
investigate the effects of initial solution techniques and various search techniques 
on local search for the SSU MCNFP. The algorithms considered are stated here. 
Computational results are presented in the following section of this paper. 

The initial work in this area employed the following local search algorithm for 
the uncapacitated single source case: 

Algorithm 1 (Vertex Local Search): 
Find an initial extreme feasible solution X 
WHILE (X is not a local optimum) 

move to the best adjacent vertex X’ 
X+X’. 

Gallo and Sodini used Algorithm 1 to locate a locate optimum. They de- 
termined if X was a local optimum, or detected the best adjacent solution to X by 
solving a series of shortest path problems. Their approach required a modified 
network to be constructed and a shortest weighted path problem to be solved for 
each vertex in the current solution flow X. Each modified problem identified the 
optimal rerouting of flow from the source S to a vertex x in the current flow X. 
The modifications to the network prevented computing a nonextreme and/or 
nonadjacent solution. The problems solved had arc costs of the form czijxi, where 
p = 0.25, 0.50 or 0.75. Initial solutions were generated by solving a shortest 
weighted path problem with arc weights cyij. This approach is stated formally here: 

Let T = (N,, AT) denote the solution tree for the current solution X. Denote 
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the root of this tree by S. Flow on arc (i, j) is of magnitude xii. Denote by 
G = (N, A) the original network flow problem with concave arc costs cij, flow 
requirements di, and size 12 = (N] and m = IAl. For node j E NT in the current 
solution X, denote the flow into j by IN(j). Let Pjk denote the path from j to k in 
T. 

For each node i in the current solution tree T a shortest weighted path problem 
based on the network G’ = (N’, A’) with arc weights wjk is constructed and 
solved. G’ is constructed as follows: 

1. Reduce flow on the path from S to i by IN(i) units: X’ = X, V(1, m) E Psi, 

4,m = x;,m - IN(i). 
2. Generate a weight for each arc in G’ based on the augmenting flow IN(i): 

V(E, j) E A’ wlj = cIj(xij + ZN(i)) - c,,(xl). 
3. Update G’ to avoid nonextreme solutions: For each node k E NT 

(a) (k = i) + remove the single arc (I, k) E A *, 
(b) (k E NT) and (k is not a descendent of i in T) + remove all incoming 

arcs to node k, add arc (S, k) with weight w~,~ = CCI,jIEPSI, w~,~, 
(c) (k f NT) and (k is a descendent of i in T)+remove node k and all 

associated arcs. 

Steps (1) and (2) generate a weighted network that corresponds to the cost of 
rerouting IN(i) units of flow from path Psi onto any valid path in G. Step (3) 
forces the new flow to be adjacent to flow X, and extreme. This corresponds to 
the fact that if x’ is an adjacent flow to X, then X + X’ contains a single cycle [5]. 
A flow across arc (S, k) in G’ represents the original flow across path PSR in 
solution X of G. This forces the new flow X’ to follow the old flow until node k, 
then divert onto a new path until reaching node i. Flow cannot pass on arcs of 
solution X after the first diversion because of Steps 3(a) and 3(b), where incoming 
arcs are removed for nodes in solution X. This limits X + X’ to the single cycle 
requirement. Step 3(c) prevents the case where X’ consists of X with a cycle 
appended at i. Figures 10 and 11 provide a sample transformation. 

Fig. 10. Original graph and solution. 
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Fig. 11. Transformed sub-problem for node 2. 

A simple variation of algorithm 1 is to move to the first better adjacent solution 
detected: 

Algorithm 2: 
Find an initial extreme feasible solution X 
WHILE (X is not a local optimum) 

move to the first detected better adjacent vertex X’ 
X+X’. 

This algorithm provides additional options in terms of the order that adjacent 
solutions are evaluated. 

An alternative to searching only adjacent vertices is to relax the search to a 
superset of the adjacent vertices of X that are easily computed. For the above 
case, this can be achieved by solving a series of shortest weighted path problems 
that correspond to rerouting flow to a vertex, but only for a subset of the vertices 
in X. In this case, we do not modify the graph to prevent nonextreme solutions 
and/or nonadjacent solution. The maximum number of shortest path problems 
solved is (2 * (number of sinks)) - 1. This corresponds to branch points (vertices 
with degree greater than two) in the solution X, along with the sink vertices. In 
the event that a nonextreme solution is selected as the next candidate local 
optimum, cycles in the new solution are detected and flow is rerouted appropri- 
ately. This can result in additional improvements to the solution. The relaxed 
approach can be shown to converge to a local optimum. However, it is possible 
that it visits several local optima before terminating. This relaxed approach gives 
rise to two additional algorithms: 

Algorithm 3 (Relaxed Local Search): 
Find an initial extreme feasible solution X 
WHILE (X is not a “relaxed” local optimum) 

move to the best “relaxed” adjacent vertex X’ 
force the solution to be extremal 
X+X’. 
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Algorithm 4: 
Find an initial extreme feasible solution X 
WHILE (X is not a “relaxed” local optimum) 

move to the first detected better “relaxed” adjacent vertex X’ 
force the solution to be extremal 
X+X’. 

Formally the relaxed algorithm is as follows: 
For each branch point and sink vertex solve a shortest weighted path problem 

on network G’, where G’ is constructed by applying steps (1) and (2) of the 
vertex local search algorithm. Nonextreme solutions are detected and forced to a 
neighboring extreme solution by 

1. Performing breadth first search on the solution graph (not necessarily a tree 
in this case). 

2. Identifying cycles as surplus arcs (arcs (i, j) 3 (i, j) is not used in the 
breadth first tree). 

3. Removing the cycles in order i,, i,, . . . , i, 3depth(i,) <depth(i,+,), I= 
1,2,. . .) k - 1. Cycles can be removed in a fashion that improves the 
current solution cost. This is achieved by exploiting the fact that a cycle 
results from two paths terminating in the same node (Ps,,i and Ps,,,). If fir 
denotes the flow into node i from path Ps,,i and fiZ denotes the flow from 
Ps,,i, we can reroute the flow based on the cost of rerouting flow & onto 
PSI,, as compared to rerouting flow fil onto Psz+. 

TO see that it is sufficient to solve problems only for the branch points and sinks, 
we note that 

1. For any xii E X 3 xjj > 0 there exists a branch point or sink with incoming 
flow equal to xii. 

2. For the relaxed case, G’ permits any rerouting of the current flow IN(i). 
This includes cases whee the flow diverts from Psi, returns at node j, and 
proceeds to i via Pii. 

These two facts combined indicate that the problem of diverting flow of size IN(j) 
to node j, occurs as a subproblem for some case based on rerouting flow to a 
branch point or sink. 

Additional variations for all the above algorithms can be obtained by varying 
the initial solution techniques. We considered a range of such techniques: 

(a) Shortest paths based on arc weights aij. 
(b) Shortest paths based on arc weights pij, where we address problems with a 

randomly generated pij for each arc. 
(c) Solving a series of independent shortest path problems based on the flow 

requirement for each sink, and the actual concave costs of each arc. For 
each sink, a shortest weighted path problem is solved from the source to 
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the sink. The weights are computed for each arc as the actual cost of flow 
equal to the sink requirement. 

(d) Solving a series of inter-related shortest path problems. The sinks are 
assigned an ordering sr, . . . , sk. Again a shortest weighted path problem is 
solved for each sink. For this case, the arc weights for the i-th shortest 
weighted path problem are based on the cost of augmenting flow to the 
computed flows for sinks sr, . . . , si-r. This method allows for many 
variations, based on the order that we solve the shortest path problems. We 
consider the sinks in (1) input order, (2) largest required flow to smallest, 
(3) smallest required flow to largest, and (4) a two pass approach where (a) 
is used to compute the cost per unit flow for each sink, then (dl) is 
executed with the sinks in order of smallest cost per flow. 

Algorithms for local search in multicommodity networks are explored in [12]. 
Simplex based local search algorithms and global search heuristics for the 
fixed-charge case are presented in [2], [13], and [18]. 

4. Computational Results 

For each combination of basic algorithm (1,2,3,4) and initial solution technique 
(a, b, c, dl, d2, d3, d4) we implemented and tested the local search algorithms 
on randomly generated graphs of varying density. These results were originally 
reported in [7]. Here we extend the results to include computational tests on 
layered networks. A sample of our results is presented in Figures 12 through 15. 
Each row in these figures corresponds to 100 test cases on a network with 25 
nodes and 10 sinks. The average number of shortest paths indicates the number of 
shortest path problems solved in the course of locating a local optimum. The 
maximum and average number of iterations corresponds to the number of vertices 
checked for local optimality during the search. The average initial solution is the 
objective function value for the solution generated by the initial solution tech- 
nique. The average first solution corresponds to the result after one iteration of 
the local search algorithm. The average final solution corresponds to the objective 
function value of the detected local optimum. 

The test cases in Figures 12 through 15 were generated in a random fashion. 
Arcs were generated by computing two random integers uniformly distributed in 
P, 2,. . - , n], where IZ is the number of nodes in the network. Duplicate arcs and 
arcs of the form (i, i) were discarded. After the specified number of arcs were 
successfully generated, the resulting network was tested for connectivity by 
solving a single source shortest path problem from the source to all nodes in the 
network. If the connectivity was suitably high, then cost functions were generated 
for each arc. Each cost function was ef the form cr,,x$, where the czjj were 
uniformly distributed in [l, 2, . . . , 1001 and the pij were uniformly distributed in 
[.1,.2, . . . ) 11. This randomness results in the objective value functions increasing 
for sparse networks. This follows directly from the fact that as network density 
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Method # Arcs 

Avg # of 
shortest 
paths 

Max. 
# of 
Its 

Avg. 
# of 
Its 

Average 
Initial 
Solution 

Average 
First 
Solution 

Average 
Last 
Solution 

La 500 100.88 12 6.92 1405 611 218 
2.50 95.26 12 6.50 2863 1119 439 
125 94.91 11 6.41 5053 1992 940 

62 72.58 9 4.76 8394 4892 3539 

l,b 500 141.20 17 10.98 1013 839 224 
250 132.14 16 9.85 1156 974 429 
125 109.04 13 7.67 1588 1336 910 

62 62.42 9 4.12 4410 3809 3535 

l,c 500 75.58 11 5.21 280 254 212 
250 75.89 11 5.26 549 ,498 418 
125 67.52 9 4.57 1085 1004 900 

62 47.62 6 3.14 3728 3608 3533 

1, dl 500 41.22 7 2.92 234 222 214 
250 40.79 8 2.85 457 438 424 
125 41.15 6 2.85 977 935 906 

62 30.02 6 2.03 3608 3564 3542 

l,d2 500 36.79 9 2.58 231 223 216 
250 38.63 7 2.70 460 443 430 
125 37.42 8 2.57 965 926 905 

62 31.11 6 2.07 3620 3565 3537 

Fig. 12. Computational results for Algorithm 1. 

Method 

2, a 

# Arcs 

500 
250 
125 

62 

Avg#of Max. 
shortest # of 
paths Its 

66.89 19 
59.47 16 
63.79 20 
49.75 15 

Avg. 
# of 
Its 

8.80 
7.88 
8.13 
5.69 

Average 
Initial 
Solution 

1405 
2863 
5053 
8394 

Average 
First 
Solution 

1025 
2085 
3698 
6781 

Average 
Last 
Solution 

219 
442 
942 

3538 

2, b 500 73.74 26 13.43 1013 934 231 
250 77.94 21 12.41 1156 1078 446 
125 71.65 18 9.62 1588 1489 930 

62 41.33 12 4.66 4410 4088 3535 

2, c 500 44.22 14 5.94 280 263 215 
250 45.15 14 6.14 549 520 422 
125 41.69 15 5.30 1085 1044 900 

62 33.15 12 3.59 3728 3649 3536 

2, dl 500 29.42 7 3.14 234 226 215 
250 27.75 10 3.01 457 442 424 
125 27.69 7 3.00 977 948 907 

62 23.07 8 2.10 3608 3573 3542 

2, d2 500 26.55 9 2.65 231 225 216 
250 27.44 10 2.86 460 446 429 
125 26.37 8 2.66 965 934 904 

62 23.64 7 2.14 3620 3574 3538 

Fig. 13. Computational results for Algorithm 2. 
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Avg # of Max. Avg. Average Average Average 
shortest # of # of Initial First Last 

Method # Arcs paths Its Its Solution Solution Solution 

3, a 500 73.50 12 6.34 1405 535 213 
250 69.46 11 6.02 2863 988 420 
125 69.66 11 5.98 5053 1811 903 

62 49.58 8 4.27 8394 4452 3534 

3,b 500 108.05 17 9.87 1013 192 213 
250 104.43 16 9.22 1156 946 421 
125 84.83 12 7.33 1588 1319 905 

62 47.46 8 4.03 4410 3796 3532 

3,c 500 58.76 11 5.04 280 253 211 
250 59.51 10 5.12 549 497 418 
125 51.99 9 4.41 1085 997 899 

62 36.58 6 3.10 3728 3604 3533 

3,dl 500 35.00 9 3.03 234 221 212 
250 33.53 8 2.87 458 437 423 
125 33.12 6 2.85 977 931 903 

62 24.12 6 2.06 3608 3560 3536 

3, d2 500 34.21 10 2.74 231 221 213 
250 35.05 7 2.76 460 438 425 
125 33.41 9 2.65 965 924 900 

62 26.88 5 2.11 3620 3561 3533 

Fig. 14. Computational results for Algorithm 3. 

Avg # of Max. Avg. Average Average Average 
shortest # of # of Initial First Last 

Method # Arcs paths Its Its Solution Solution Solution 

4, a 500 45.91 15 7.56 1405 1090 213 
250 42.73 13 7.26 2863 2140 419 
125 41.88 18 6.88 5053 3689 904 

62 29.45 9 4.71 8394 6341 3537 

4, b 500 66.17 17 11.51 1013 914 212 
250 58.83 16 10.16 1156 1068 428 
125 50.79 14 8.31 1588 1478 902 

62 30.06 10 4.27 4410 4061 3537 

4, c 500 36.37 12 5.66 280 265 213 
250 36.42 12 5.63 549 521 421 
125 32.81 10 4.98 1085 1040 897 

62 24.73 8 3.31 3728 3649 3536 

4, dl 500 21.26 10 3.11 234 224 212 
250 20.28 7 2.92 457 440 423 
125 20.38 7 2.95 977 941 903 

62 16.83 7 2.10 3608 3569 3536 

4, d2 500 21.73 10 2.80 231 222 213 
250 21.19 9 2.84 460 442 425 
125 21.12 12 2.75 965 930 900 

62 19.35 8 2.17 3620 3572 3533 

Fig. 15. Computational results for Algorithm 4. 
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increases, the probability of a low cost solution existing between the source and 
any sink increases. 

All of the algorithms we employed are based on solving shortest path problems. 
Our current implementation does not exploit network sparseness, indicating that 
processing time is not an accurate measure for our results on sparse networks. In 
order to present our results in an implementation independent manner, we use 
the number of shortest path problems solved to compare the alternate techniques. 
To provide an indication of performance in terms of processing time, we provide 
times for several complete networks in Figure 16. These times are for the various 
algorithms (with the number of sinks 10) executed on a single T800 Transputer. 
The T800 is an INTEL manufactured 32-bit microprocessor designed to facilitate 
parallel processing. 

Figures 12 through 15 indicate a subset of several thousand test cases executed 
to establish the effects of varying the initial solution technique and the local 
search technique. From these results we have observed the following: 

1. Gallo and Sodini’s results (Algorithm 1 and initial solution technique a) 
indicated a large improvement resulting from applying local search [5]. Our 
results demonstrate that this improvement is primarily due to the poor initial 
solutions resulting from the initial solution technique. In fact, technique a 
provided the poorest initial solutions when compared to the other six 
techniques considered. 

2. In all the test cases, the maximum number of vertices examined during local 
search with initial solution techniques c and d was 20. This includes test 
cases with 100 nodes and 9900 arcs. This indicates a similarity between the 
performance of the Simplex method for linear programming and local search 
for the SSU MCNFP. 

3. The initial solution techniques had little effect (on the average) on the 
objective function of the detected local optimum. This is surprising as the 
magnitude of the initial solutions varied significantly. 

4. The initial solution techniques did have an effect on the convergence rate to 
a local optimum. This is especially evident when comparing techniques a, b, 
and c to the others. 

5. The algorithms moving to the first better adjacent vertex (2 and 4) required 
on the average 25-40% fewer shortest path problems to be solved. 

Method 121132 
Nodes/Arcs 
25/600 5012450 100/9900 

l,d2 1.09 
2, d2 0.76 
3,dZ 1.14 
4, d2 0.81 

Fig. 16. Timing results (seconds). 

5.63 29.46 112.38 
4.28 21.48 88.10 
5.22 27.73 77.75 
3.55 16.09 53.07 
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# Layers Algorithm 1, d2 Algorithm 3, d2 

5 25.8 14.3 
10 40.3 16.7 
20 70.4 21.7 

Fig. 17. Processing comparison for layered graphs (average number of shortest weighted 
path problems solved). 

6. The algorithms based on the relaxed search technique (3 and 4) required on 
the average 7-40% fewer shortest path problems to be solved. The cases 
with similar performance arise for initial solution technique d. The variation 
in performance will increase substantially for layered networks, as the 
random graphs for our test cases tend to have solutions with few transship- 
ment nodes. This is demonstrated in Figure 17 where layered graphs with 5 
nodes per layer and full interconnection between layers are solved using 
Algorithms 1 and 3. In these graphs the first layer consists solely of the 
source node, and each layer i is fully connected to layer i + 1. It should be 
noted that the processing time for each iteration of relaxed search is larger. 
This is due to the additional processing required to convert nonextreme 
solutions to extreme solutions after the shortest path problems are solved. 

7. Two of the initial solution techniques (d2 and d4) found local optima a 
significant portion of the time (20-40%) for sparse problems. 

8. Network density had only a slight effect on the number of iterations required 
for local search, especially for initial solution techniques c and d. 

These results indicate that local search techniques for the SSU MCNFP are 
computationally efficient. The surprising results are how efficient several initial 
solution techniques are at computing low cost solutions, and how little effect the 
initial solution technique has on the final solution’s objective value. Another 
surprising result is the efficiency of local search (in terms of vertices visited) on 
dense networks. In addition, even though the relaxed local search algorithm 
computes a local optimum over a larger neighborhood than the Gallo and Sodini 
approach, the observed processing requirements for the relaxed approach are 
lower in most cases. 

5. Summary 

We have provided new complexity and computational results for the SSU 
MCNFP. We have shown that a wide range of these problems fall into the realm 
of NP-hard problems. We presented a formal description of the Gallo and Sodini 
[5] algorithm for local search. We also developed alternative local search al- 
gorithms, and implemented them for performance comparison. These results 
indicate that a substantial performance improvement can be obtained for local 
search by applying our relaxed algorithm, and by using greedy-based initial 
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solution techniques. In addition, the presented algorithms are all amenable to a 
parallel solution. Each iteration involves the solution of multiple disjoint shortest 
weighted path problems that can be distributed across processors. These results 
indicate that the presented approach can be applied to the solution of large 
single-source uncapacitated minimum concave-cost network flow problems. 
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