
Algorithms for the Single-Source Uncapacitated
Minimum Concave-Cost Network Flow Problem

G. M. GUISEWITE’ and P. M. PARDALOS’
‘HRB Systems, State College, PA, U.S.A.;
‘Pennsylvania State University, University Park, PA 16802, U.S.A.

(Received: 16 May 1991)

Abstract. We investigate algorithms, applications, and complexity issues for the single-source un-
capacitated (SSU) version of the minimum concave-cost network flow problem (MCNFP). We present
applications arising from production planning, and prove complexity results for both global and local
search. We formally state the local search algorithm of Gallo and Sodini [5], and present alternative
local search algorithms. Computational results are provided to compare the various local search
algorithms proposed and the effects of initial solution techniques.

Key words. Concave-cost network flow, uncapacitated, single, source, global optimization, local
optimization, complexity theory, NP-hard.

1. Introduction

The single-source uncapacitated (SSU) version of the minimum concave-cost
network flow problem (MCNFP) requires establishing a minimum cost flow from
a single generating source to a set of sinks, through a directed network. All arcs
are uncapacitated, indicating that the entire source flow can pass through any arc.
The SSU MCNFP can be stated formally as follows:

Given a directed graph G = (N, A) consisting of a set N of IZ nodes and a set A
of m ordered pairs of distinct nodes called arcs, coupled with an n-vector
(demand vector) d = (di) with d, < 0 and di 3 0, i = 2, . . . , n, and a concave cost
function for each arc, cjj(xij), then solve

global min c cij(xij)
(i,j)EA

subject to

c. .~,~-(,~~~xie=di, V~EN (1)
(k,i)EA 1,

and

OSXij) V(i, j) E A. (2)

All constraints and demands are assumed to be integral. The requirement that
only d, < 0 corresponds to the single source case. The lack of an upper bound for
the xii gives rise to the uncapacitated case.

Journal of Global Optimization 1: 245-265, 1991
0 1991 Kluwer Academic Publishers. Printed in the Netherlands.

246 G. M. GUISEWITE AND P. M. PARDALOS

The SSU MCNFP is a concave optimization problem over a convex poly-
hedron. This indicates that if a finite optimal solution exists, then there exists an
extreme point of the feasible domain that is optimal [3]. Extreme points of the
polyhedron correspond to basic feasible solutions in the simplex tableau [l]. The
concave case differs from the convex case in that a local optimum need not be a
global optimum. For the SSU case an extreme flow (corresponding to an extreme
point) is an arborescence [21]. The leaves of the solution tree correspond to a
subset of the sink nodes. The integral constraints and demands give rise to
extreme flows of integral value.

A SSU MCNFP has a finite optimal solution if it contains no negative cost
cycles, and all sinks are reachable from the source (i.e., there exists a directed
path from the source to each sink). The latter requirement is necessary for the
existence of a feasible flow. The presence of a negative cost cycle would imply an
unbounded negative cost solution; the absence of such a cycle guarantees a finite
solution [9]. Unless stated otherwise, we consider in this paper cases of the SSU
MCNFP with arc flow costs that are non-negative, nondecreasing and concave.
This property of objective functions accurately reflects cost functions for models
of real world problems in areas such as production planning and transportation
analysis. For example, in a production setting decreasing concave arc cost
functions would exclude the influence of demand on production.

The SSU MCNFP arises naturally in numerous application areas. For produc-
tion and inventory planning models, the single source can indicate a starting point
in time for the model. The overall flow indicates the total production for the time
window of the model, and the sinks represent intermediate production require-
ments for the time window. This approach is reflected in the following three
production and inventory planning models.

The basic model in this area is the Wagner-Whitin model for a production and
inventory system with no backlogging of demand [16], [17], [21], [22]. The
variables for the model are:

1. P,(x,) -cost of producing xi units in period i,
2. ZZj(Zi) - the inventory holding costs in period i,
3. n - number of time periods,
4. yi -market requirements for time period i,
5. xi - amount produced in period i,
6. Zi - inventory in period i, Zi = ChzI (xk - rk),
7. Production nonnegative corresponds to xi 3 0,
8. No backlogging unsatisfied demand corresponds to Zi 2 0.

The resulting model becomes

subject to

CONCAVE-COST NETWORK FLOW 247

2 'i = 2 'i

-xi - Iip1 +li=-ri i=l,...,n

xiao, Ii20, I,=O, I,=O.

The network is depicted in Figure 1 for a three time period model. It is an
acyclic, single source, multiple sink, uncapacitated network. The flows from S to i
correspond to production (xi) in time period i, while the flows from i to j, i < j
correspond to inventory (Zi).

The effect of allowing backlogging of demand on the previous model is
explored in [20], [22]. H ere the inventory constraints can become negative
(Ii 2 -a, a 2 0), indicating demands in a time period can be satisfied in a later
period. The resulting extended network is in Figure 2. Flow on a backward arc
corresponds to backlogged demand.

Both of the previous models assumed a single production facility. Generalizing
the model to a product which requires a series of processes, each process
performed in a separate facility, results in a multi-echelon economic lot size
model [22]. The network for a three facility, three time period model (without
backlogged demand) is shown in Figure 3. Facility 0 is the origin of the material
required for processing. Again, flow from (I, i)+ (I, j) corresponds to production
in time period I at facility j and (i, I)+ (j, I) corresponds to inventory in period i
at facility 1.

Concave cost functions for the previous models arise from start-up costs, such
as facilities and equipment, and economies of scale, reflected in storage require-
ments, shipping, and material purchases. Other areas given rise to this class of

Fig. 1. A simple production model

248 G. M. GUISEWITE AND P. M. PARDALOS

Fig. 2. Production model with backlogged demand.

Fig. 3. Multi-echelon production model.

problems include transportation and shipping and communications. Also, many
known NP-complete problems, such as 3-SAT, Minimum Cover, Vertex Cover,
etc., can be formulated as SSU MCNFP.

2. Complexity

The general SSU MCNFP is known to be NP-hard. This follows immediately
from this class of problems containing the “Steiner Tree in Graphs” problem
[6], [9]. This result is based on arc costs that correspond to fixed arc weights.

CONCAVE-COST NETWORK FLOW 249

In this section we prove that the SSU MCNFP is NP-hard for cases

1. With other types of arc cost functions,
2. For acyclic networks where all nodes have bounded total degrees less than

or equal to three.

In addition, we prove that the problem of finding a strict local optimum, i.e., a
feasible solution that has a lower cost than all solutions in a specified neighbor-
hood, for SSU MCNFP is NP-hard if 3-SAT with unique solution is NP-hard.

The following transformation demonstrates that SSU MCNFP is NP-hard for
cases involving objective functions other than the fixed-charge case (cii(xii > 0) =
Wij 2 0).

.Consider the 3 Dimensional Matching (3DM) problem that is known to be
NP-complete [6]:

INSTANCE. Set M c W x X x Y, where W, X, and Y are disjoint sets having
the same number q of elements.

QUESTION. Does M contain a matching, i.e. a subset M’ c M such that
IM’I = q and no two elements of M’ agree in any coordinate?

We construct the following flow problem:

1. Create a single source vertex S with source flow d, = -3 * q.
2. Create n =] M] transshipment nodes Mi and arcs (S, Mi). These correspond

to the elements (Wj, X,, Yl) for some i, k, and I 3 1 G i, k, I s q.
3. Create3*qsinksW, ,..., W,,X, ,..., X,,Y1 ,..., Y,.Eachsinkhasflow

requirement 1 (di = 1). For each Mi add arcs (Mi, Wj), (Mj, X,), and
(Mi, Y!), where n/r, = (Wj, X,, Y,).

4. All arcs are uncapacitated.
5. All arcs have cost zero, except the arcs originating at the source.

The resulting network is pictured in Figure 4. Consider the following cost
functions:

1. Start-up costs: This extends the fixed-charge case: cij(0) = 0, cij(x) = a +
(b*x), a>o.

2. Cost functions satisfying: ~~~(0) = 0, c,(x + y) < cjj(x) + cij(y), x, y > 0. This
case includes all strictly concave functions, and a number of nonconcave,
nonconvex functions.

For case 1, consider when all arcs (S, M,) have cost 1 for nonzero flow. Then the
optimal cost of the network problem is q if and only if the 3DM instance has
answer yes. In general, if the cost on each arc is cij(x) = a + bx, then the optimal
cost of the network problem is (q * a) + (b * 3 * q) if and only if the 3DM instance
has answer yes. In both cases the result follows by noting that if flow is split across

250 G. M. GUISEWITE AND P. M. PARDALOS

Fig. 4. Flow resulting from 3DM transformation.

more than q of the outgoing source arcs, then we incur additional startup costs. In
addition, each Mi has a directed path to exactly 3 sinks (one in each of IV, X, and
Y), implying at least q of the (S, Mi) have nonzero flow.

For case 2, consider where the cost of all (S, Mi) are identical and satisfy the
specified constraint. Here we find that the optimal cost of the network problem is
EYE1 ~~,~~(3) if and only if the 3DM instance has answer yes. This follows from the
observation that if no split of the flow occurs, the cost is as specified above and
the arcs of the flow establish the solution to the 3DM problem. If any split occurs,
then the cost increases.

For the case with no split:
IMI

FIBWCOST = x ~,,,~(xs,M,) = f: c,,Mi(3) .
i=l i=l

For the case with the flow split for a single arc (without loss of generality flow
on (S, Mq) is split onto arc (S, M,,,)):

WI
FLOWCOST = 2 cS+&s,M,)

i=l

zz
(z; CS,MiW) + %M$%,M,) + CS,M*+l(XS,Mq+l)

> (1s; csJ4j3)) + CS,MqW = z$l CS,MiW *

CONCAVE-COST NETWORK FLOW 251

Fig. 5. Bounded degree constructors.

Noting that the above transformation from 3DM is a polynomial transformation
indicates that the SSU MCNFP is NP-hard, even for cases with arc costs other
than fixed-charge.

NP-hardness results can be extended for each of the cost function cases to
networks of bounded arc degree (both in-degree and out-degree). This can be
seen by noting that any network can be converted to a network with all nodes of
total degree less than or equal to three simply by using the constructors depicted
in Figure 5. Constructor A is used to reduce the in-degree of a node, while B
reduces the out-degree. All new arcs added have associated a zero cost. The
conversion process can be viewed iteratively as follows:
Suppose node X has total degree n > 2.

WHILE degree(X) > 2
IF in.degree(X) > 1

(1) Pair the incoming arcs, resulting in (1 in’degF(x)]) pairs ai, b,
(2) Replace each arc pair with a type A constructor

IF out.degree(X) > 1
(1) Pair the outgoing arcs
(2) Replace each arc pair with a type B constructor.

The process terminates in at most [log2(y1)1 steps. The number of added nodes
is O(n), the number of added arcs is, also, O(n). A sample transformation is
provided in Figure 6.

Fig. 6. Sample degree reduction transformation.

252 G. M. GUISEWITE AND P. M. PARDALOS

Each of the above results have addressed the complexity of locating a globally
optimal solution for the SSU MCNFP. Here we investigate the complexity of
checking if a solution is locally optimal, and of finding a local optimum for a SSU
MCNFP. Before we can investigate these problems we must establish the criteria
for a local optimum. For the MCNFP, the standard marginal definition of local
optimality (i.e., rerouting a small portion of flow [19]) is not satisfactory, as some
cost functions, e.g., lixed costs (f(0) = 0, f(x > 0) = c > 0), result in all extreme
flows being locally optimal. We use the definition of a local optimum as defined by
Gallo and Sodini [5]. Here, a feasible solution is a local optimum if its objective
value is less than or equal to all of its neighboring vertices. Gallo and Sodini also
demonstrate that the problem of checking if a feasible solution for SSU MCNFP
is a local optimum is in P. This result indicates that the problem of checking if a
solution is a strict local optimum is in P. The complexity of finding a local
optimum for SSU MCNFP is an open problem. Using the following 3-SAT
transformation, originally developed in [8], we can establish a result for the
problem of finding a strictly local optimum.

The transformation from 3-SAT is as follows:

INSTANCE. Collection C = {c,, c2, . . . , cm} of clauses on a finite set U of
variables such that]ci] = 3 for 1~ i =G m.

QUESTION. Is there a truth assignment for U that satisfies all the clauses in C?

We construct the following flow problem:
Let S denote the source vertex.

1. Add (S,v,),tli=l,. . . , k where k = IV1 is the number of distinct variables
in the 3-SAT instance.

2. Add (Vi, T,), (vi, Fi), Vi. This corresponds to a TRUE or FALSE assign-
ment for each variable.

3. Add (Ti, FC,), (Fj, FC,), tli. This forces a choice at each node.
4. The remaining arcs and nodes depend on the structure of the 3-SAT clauses.

For example, if Ci = c, A cY A c, we add nodes ti,, fi2, fi3 and arcs (TX, ti,),
(TY, tiz), (T, , ti3). If c, were negated we would add arc (Fx , t,i) in place of
(TX, t,i). For the case where Ci = c, A (cY v cz) we would add nodes ti,, ti,
and arcs (TX, ti,), (Ty , tiz), (T, , ti2). The addition of only two new nodes
results from the choice of the conjunction in forcing a variable’s value of
TRUE or FALSE. All other cases are handled in a similar manner. Figure 7
demonstrates instances of this subset of the transformation.

5. Let ITI denote the number of t nodes added at step 4. Let IV] denote the
number of distinct variables occurring in clauses. Then set the source flow to
(T] + IV]. IV] units of flow are used to force the assignment of TRUE or
FALSE to each variable.] TI units of flow are used to force the satisfiability

CONCAVE-COST NETWORK FLOW 253

1 1 1

Fig. 7. Transformation of the clauses.

of each clause. This corresponds to each FC, and each tij being a sink with
requirement 1.

6. All arc flow costs are zero except for (Vi, Ti) and (y, Fj) which have cost
zero if flow equals zero and one if flow is greater than zero.

The resulting network, presented in Figure 8, has optimal flow cost /VI if and only
if the 3-SAT instance has a satisfying assignment. This can be seen by noting that
any feasible flow has cost greater than or equal to (VI due to the FC, sinks forcing
a unit of flow through each Vi. If the additional flow necessary to satisfy the sinks

1 1 1 ‘1’

Fig. 8. Network resulting from 3-SAT transformation

254 G. M. GUISEWITE AND P. M. PARDALOS

resulting from the clauses (tij) can be met without taking a path from Vi to Tj or Fi
which currently has zero flow, then the cost of the flow remains at IV1 . In this
case, the assignment ui = TRUE if the flow on (Vi, Ti) is greater than zero, else
FALSE, results in a satisfying assignment for the 3-SAT instance. If no satisfying
assignment exists, we see it is necessary to have some i such that both (Vi, Ti) and
(Vi, Fi) have nonzero flows. This implies the optimal network flow has cost
greater than IT/I.

We use the following properties of the 3-SAT transformation:

1. If a feasible flow is not a global optimum, then it is not a strict local
optimum. This results from a nonoptimal flow having some variable with
flow on both (vi, Ti) and (vi, Fi). An adjacent solution of equal cost can be
obtained by altering the flow to the corresponding FC, sink.

2. If the 3-SAT instance has a unique solution, then this global optimum is a
strict local optimum.

These combined facts indicate that if 3-SAT with unique solution is NP-hard,
then the problem of finding a strict local optimum for SSU MCNFP is also
NP-hard. Although the complexity of 3-SAT with unique solution is an open
problem, Valient and Vazirani [15] prove that SAT with unique solution is
NP-hard under randomized polynomial-time reductions. The existence of a
parsimonious transformation from SAT to 3-SAT [6] carries the randomized
result over to 3-SAT. Pardalos and Schnitger [ll] prove that checking strict local
optimality for the indefinite case is NP-hard, indicating that finding a strict local
optimum for this case is NP-hard.

Few problems in the class SSU MCNFP have been identified as solvable in
polynomial time. For many of the cases that are, the problem can be reformulated
and solved as a shortest weighted path problem. This includes the single sink case
[21]. For this problem, using the previously stated definition of a local optimum,
any extreme solution is adjacent to all other extreme solutions. This implies a
single local search test based on a shortest weighted path problem (as discussed in
the next section) will locate a global optimum. The following results present
shortest path reformulations of the Wagner-Whiten model for production and
inventory systems, and the extension to allow backlogged demands. Both of these
problems were stated formally in the previous (introduction) section.

Figure 9 represents a state diagram for the Wagner-Whiten production model
without a backlogged demand. Changing states in this model corresponds to
forcing a specified flow on one of the (S, i) arcs of Figure 1. The candidate flow
magnitudes correspond to R, = C!+ Ye where 1~ i sj G it. The state diagram is
acyclic, corresponding to the fact that the flow requirements are met in the
specified order rr, rZ, . . . , Y,. Being in state i indicates that all requirements up
to, and including, ri have been met, and no other flows have been met. Moving
from state i to state j, i > i, corresponds to moving R,+l,j units of flow across arc
(8, i + l), then forwarding the excess flow (R,+l,j - ri+l) along arc (i + 1, i + 2),

CONCAVE-COST NETWORK FLOW 255

Fig. 9. State diagram for Wagner-Whiten problem.

(R,+l,j - ri+r - ric2) units along (i + 2, i + 3), etc. This formulation of the prob-
lem indicates that there are 2”-” basic feasible solutions. This follows from all
solutions terminating in state (node) n, and passing through any subset of the
remaining states. The cost assigned to each arc is as follows (c’ = new costs,
c = original arc costs):

j-l

c’(i, j) = cS,i+l(Ri+l,j) + C Cl,l+l(Rl+l,j) .
l=i+l

The resulting shortest path problem can be formulated and solved in O(n’)
operations using a single source shortest weighted path algorithm for dense
networks (e.g., Dijkstra’s algorithm).

The corresponding formulation for the model with backlogged demand requires
additional states. In this case, each state (j, k) reflects the maximum required
flow currently satisfied, rk, and the arc from the source used to convey this flow,
(S, j). Now a transition from state (jr, k,) to state (j2, k2) corresponds to forcing
C”? [-k,+l r[units of flow across arc (S, j2), where jr G k, < jz s k,. This flow
represents Rk,+l,j,-l units of backlogged demand. The cost for arc flows in this
state diagram are

k,-I

i2

+ c Cl,l-l(Rk,+l,H>~
l=k1+2

Nodes exist for the initial state (0,O) and all states (i, j) 3 1 s i c j s n,
resulting in O(n*) nodes. Arcs exist for all valid transformations, (jl, k,) to

256 G. M. GUISEWITE AND P. M. PARDALOS

(j2, k,) where j1 6 k, < jz 6 k,, resulting in a dense network. The resulting
shortest path formulation and solution requires O(n”) operations, with the
optimal solution corresponding to the minimum shortest weight path from (0,O)
to any (i, n), i = 1, . . . , n.

3. Local Search Algorithms

Because the global search problem for the SSU MCNFP is iVP-hard, efficient
algorithms exist only for highly structured subcases, e.g., the production models
presented in Section 1. Recent work by Thach [14] addressed the circuitless case
by decomposing the problem into linear programs and developing successive
approximations to the concave objective function. The send-and-split method [4]
applies to the uncapacitated case in general. It employs dynamic programming,
and the resulting processing time is exponential only in the number of sources and
sinks. Numerous general concave enumeration techniques can be applied to this
problem. A recent summary can be found in [lo].

In order to avoid the excessive computations required by exact global search,
we investigate the performance of local search for the SSU MCNFP. Work by
Gallo and Sodini [5] indicates that even though the complexity of local search for
this problem is unknown, preliminary computational results are encouraging. We
investigate the effects of initial solution techniques and various search techniques
on local search for the SSU MCNFP. The algorithms considered are stated here.
Computational results are presented in the following section of this paper.

The initial work in this area employed the following local search algorithm for
the uncapacitated single source case:

Algorithm 1 (Vertex Local Search):
Find an initial extreme feasible solution X
WHILE (X is not a local optimum)

move to the best adjacent vertex X’
X+X’.

Gallo and Sodini used Algorithm 1 to locate a locate optimum. They de-
termined if X was a local optimum, or detected the best adjacent solution to X by
solving a series of shortest path problems. Their approach required a modified
network to be constructed and a shortest weighted path problem to be solved for
each vertex in the current solution flow X. Each modified problem identified the
optimal rerouting of flow from the source S to a vertex x in the current flow X.
The modifications to the network prevented computing a nonextreme and/or
nonadjacent solution. The problems solved had arc costs of the form czijxi, where
p = 0.25, 0.50 or 0.75. Initial solutions were generated by solving a shortest
weighted path problem with arc weights cyij. This approach is stated formally here:

Let T = (N,, AT) denote the solution tree for the current solution X. Denote

CONCAVE-COST NETWORK FLOW 257

the root of this tree by S. Flow on arc (i, j) is of magnitude xii. Denote by
G = (N, A) the original network flow problem with concave arc costs cij, flow
requirements di, and size 12 = (N] and m = IAl. For node j E NT in the current
solution X, denote the flow into j by IN(j). Let Pjk denote the path from j to k in
T.

For each node i in the current solution tree T a shortest weighted path problem
based on the network G’ = (N’, A’) with arc weights wjk is constructed and
solved. G’ is constructed as follows:

1. Reduce flow on the path from S to i by IN(i) units: X’ = X, V(1, m) E Psi,

4,m = x;,m - IN(i).
2. Generate a weight for each arc in G’ based on the augmenting flow IN(i):

V(E, j) E A’ wlj = cIj(xij + ZN(i)) - c,,(xl).
3. Update G’ to avoid nonextreme solutions: For each node k E NT

(a) (k = i) + remove the single arc (I, k) E A *,
(b) (k E NT) and (k is not a descendent of i in T) + remove all incoming

arcs to node k, add arc (S, k) with weight w~,~ = CCI,jIEPSI, w~,~,
(c) (k f NT) and (k is a descendent of i in T)+remove node k and all

associated arcs.

Steps (1) and (2) generate a weighted network that corresponds to the cost of
rerouting IN(i) units of flow from path Psi onto any valid path in G. Step (3)
forces the new flow to be adjacent to flow X, and extreme. This corresponds to
the fact that if x’ is an adjacent flow to X, then X + X’ contains a single cycle [5].
A flow across arc (S, k) in G’ represents the original flow across path PSR in
solution X of G. This forces the new flow X’ to follow the old flow until node k,
then divert onto a new path until reaching node i. Flow cannot pass on arcs of
solution X after the first diversion because of Steps 3(a) and 3(b), where incoming
arcs are removed for nodes in solution X. This limits X + X’ to the single cycle
requirement. Step 3(c) prevents the case where X’ consists of X with a cycle
appended at i. Figures 10 and 11 provide a sample transformation.

Fig. 10. Original graph and solution.

258 G. M. GUISEWITE AND P. M. PARDALOS

Fig. 11. Transformed sub-problem for node 2.

A simple variation of algorithm 1 is to move to the first better adjacent solution
detected:

Algorithm 2:
Find an initial extreme feasible solution X
WHILE (X is not a local optimum)

move to the first detected better adjacent vertex X’
X+X’.

This algorithm provides additional options in terms of the order that adjacent
solutions are evaluated.

An alternative to searching only adjacent vertices is to relax the search to a
superset of the adjacent vertices of X that are easily computed. For the above
case, this can be achieved by solving a series of shortest weighted path problems
that correspond to rerouting flow to a vertex, but only for a subset of the vertices
in X. In this case, we do not modify the graph to prevent nonextreme solutions
and/or nonadjacent solution. The maximum number of shortest path problems
solved is (2 * (number of sinks)) - 1. This corresponds to branch points (vertices
with degree greater than two) in the solution X, along with the sink vertices. In
the event that a nonextreme solution is selected as the next candidate local
optimum, cycles in the new solution are detected and flow is rerouted appropri-
ately. This can result in additional improvements to the solution. The relaxed
approach can be shown to converge to a local optimum. However, it is possible
that it visits several local optima before terminating. This relaxed approach gives
rise to two additional algorithms:

Algorithm 3 (Relaxed Local Search):
Find an initial extreme feasible solution X
WHILE (X is not a “relaxed” local optimum)

move to the best “relaxed” adjacent vertex X’
force the solution to be extremal
X+X’.

CONCAVE-COST NETWORK FLOW 259

Algorithm 4:
Find an initial extreme feasible solution X
WHILE (X is not a “relaxed” local optimum)

move to the first detected better “relaxed” adjacent vertex X’
force the solution to be extremal
X+X’.

Formally the relaxed algorithm is as follows:
For each branch point and sink vertex solve a shortest weighted path problem

on network G’, where G’ is constructed by applying steps (1) and (2) of the
vertex local search algorithm. Nonextreme solutions are detected and forced to a
neighboring extreme solution by

1. Performing breadth first search on the solution graph (not necessarily a tree
in this case).

2. Identifying cycles as surplus arcs (arcs (i, j) 3 (i, j) is not used in the
breadth first tree).

3. Removing the cycles in order i,, i,, . . . , i, 3depth(i,) <depth(i,+,), I=
1,2,. . .) k - 1. Cycles can be removed in a fashion that improves the
current solution cost. This is achieved by exploiting the fact that a cycle
results from two paths terminating in the same node (Ps,,i and Ps,,,). If fir
denotes the flow into node i from path Ps,,i and fiZ denotes the flow from
Ps,,i, we can reroute the flow based on the cost of rerouting flow & onto
PSI,, as compared to rerouting flow fil onto Psz+.

TO see that it is sufficient to solve problems only for the branch points and sinks,
we note that

1. For any xii E X 3 xjj > 0 there exists a branch point or sink with incoming
flow equal to xii.

2. For the relaxed case, G’ permits any rerouting of the current flow IN(i).
This includes cases whee the flow diverts from Psi, returns at node j, and
proceeds to i via Pii.

These two facts combined indicate that the problem of diverting flow of size IN(j)
to node j, occurs as a subproblem for some case based on rerouting flow to a
branch point or sink.

Additional variations for all the above algorithms can be obtained by varying
the initial solution techniques. We considered a range of such techniques:

(a) Shortest paths based on arc weights aij.
(b) Shortest paths based on arc weights pij, where we address problems with a

randomly generated pij for each arc.
(c) Solving a series of independent shortest path problems based on the flow

requirement for each sink, and the actual concave costs of each arc. For
each sink, a shortest weighted path problem is solved from the source to

260 G. M. GUISEWITE AND P. M. PARDALOS

the sink. The weights are computed for each arc as the actual cost of flow
equal to the sink requirement.

(d) Solving a series of inter-related shortest path problems. The sinks are
assigned an ordering sr, . . . , sk. Again a shortest weighted path problem is
solved for each sink. For this case, the arc weights for the i-th shortest
weighted path problem are based on the cost of augmenting flow to the
computed flows for sinks sr, . . . , si-r. This method allows for many
variations, based on the order that we solve the shortest path problems. We
consider the sinks in (1) input order, (2) largest required flow to smallest,
(3) smallest required flow to largest, and (4) a two pass approach where (a)
is used to compute the cost per unit flow for each sink, then (dl) is
executed with the sinks in order of smallest cost per flow.

Algorithms for local search in multicommodity networks are explored in [12].
Simplex based local search algorithms and global search heuristics for the
fixed-charge case are presented in [2], [13], and [18].

4. Computational Results

For each combination of basic algorithm (1,2,3,4) and initial solution technique
(a, b, c, dl, d2, d3, d4) we implemented and tested the local search algorithms
on randomly generated graphs of varying density. These results were originally
reported in [7]. Here we extend the results to include computational tests on
layered networks. A sample of our results is presented in Figures 12 through 15.
Each row in these figures corresponds to 100 test cases on a network with 25
nodes and 10 sinks. The average number of shortest paths indicates the number of
shortest path problems solved in the course of locating a local optimum. The
maximum and average number of iterations corresponds to the number of vertices
checked for local optimality during the search. The average initial solution is the
objective function value for the solution generated by the initial solution tech-
nique. The average first solution corresponds to the result after one iteration of
the local search algorithm. The average final solution corresponds to the objective
function value of the detected local optimum.

The test cases in Figures 12 through 15 were generated in a random fashion.
Arcs were generated by computing two random integers uniformly distributed in
P, 2,. . - , n], where IZ is the number of nodes in the network. Duplicate arcs and
arcs of the form (i, i) were discarded. After the specified number of arcs were
successfully generated, the resulting network was tested for connectivity by
solving a single source shortest path problem from the source to all nodes in the
network. If the connectivity was suitably high, then cost functions were generated
for each arc. Each cost function was ef the form cr,,x$, where the czjj were
uniformly distributed in [l, 2, . . . , 1001 and the pij were uniformly distributed in
[.1,.2, . . .) 11. This randomness results in the objective value functions increasing
for sparse networks. This follows directly from the fact that as network density

CONCAVE-COST NETWORK FLOW 261

Method # Arcs

Avg # of
shortest
paths

Max.
of
Its

Avg.
of
Its

Average
Initial
Solution

Average
First
Solution

Average
Last
Solution

La 500 100.88 12 6.92 1405 611 218
2.50 95.26 12 6.50 2863 1119 439
125 94.91 11 6.41 5053 1992 940

62 72.58 9 4.76 8394 4892 3539

l,b 500 141.20 17 10.98 1013 839 224
250 132.14 16 9.85 1156 974 429
125 109.04 13 7.67 1588 1336 910

62 62.42 9 4.12 4410 3809 3535

l,c 500 75.58 11 5.21 280 254 212
250 75.89 11 5.26 549 ,498 418
125 67.52 9 4.57 1085 1004 900

62 47.62 6 3.14 3728 3608 3533

1, dl 500 41.22 7 2.92 234 222 214
250 40.79 8 2.85 457 438 424
125 41.15 6 2.85 977 935 906

62 30.02 6 2.03 3608 3564 3542

l,d2 500 36.79 9 2.58 231 223 216
250 38.63 7 2.70 460 443 430
125 37.42 8 2.57 965 926 905

62 31.11 6 2.07 3620 3565 3537

Fig. 12. Computational results for Algorithm 1.

Method

2, a

Arcs

500
250
125

62

Avg#of Max.
shortest # of
paths Its

66.89 19
59.47 16
63.79 20
49.75 15

Avg.
of
Its

8.80
7.88
8.13
5.69

Average
Initial
Solution

1405
2863
5053
8394

Average
First
Solution

1025
2085
3698
6781

Average
Last
Solution

219
442
942

3538

2, b 500 73.74 26 13.43 1013 934 231
250 77.94 21 12.41 1156 1078 446
125 71.65 18 9.62 1588 1489 930

62 41.33 12 4.66 4410 4088 3535

2, c 500 44.22 14 5.94 280 263 215
250 45.15 14 6.14 549 520 422
125 41.69 15 5.30 1085 1044 900

62 33.15 12 3.59 3728 3649 3536

2, dl 500 29.42 7 3.14 234 226 215
250 27.75 10 3.01 457 442 424
125 27.69 7 3.00 977 948 907

62 23.07 8 2.10 3608 3573 3542

2, d2 500 26.55 9 2.65 231 225 216
250 27.44 10 2.86 460 446 429
125 26.37 8 2.66 965 934 904

62 23.64 7 2.14 3620 3574 3538

Fig. 13. Computational results for Algorithm 2.

262 G. M. GUISEWITE AND P. M. PARDALOS

Avg # of Max. Avg. Average Average Average
shortest # of # of Initial First Last

Method # Arcs paths Its Its Solution Solution Solution

3, a 500 73.50 12 6.34 1405 535 213
250 69.46 11 6.02 2863 988 420
125 69.66 11 5.98 5053 1811 903

62 49.58 8 4.27 8394 4452 3534

3,b 500 108.05 17 9.87 1013 192 213
250 104.43 16 9.22 1156 946 421
125 84.83 12 7.33 1588 1319 905

62 47.46 8 4.03 4410 3796 3532

3,c 500 58.76 11 5.04 280 253 211
250 59.51 10 5.12 549 497 418
125 51.99 9 4.41 1085 997 899

62 36.58 6 3.10 3728 3604 3533

3,dl 500 35.00 9 3.03 234 221 212
250 33.53 8 2.87 458 437 423
125 33.12 6 2.85 977 931 903

62 24.12 6 2.06 3608 3560 3536

3, d2 500 34.21 10 2.74 231 221 213
250 35.05 7 2.76 460 438 425
125 33.41 9 2.65 965 924 900

62 26.88 5 2.11 3620 3561 3533

Fig. 14. Computational results for Algorithm 3.

Avg # of Max. Avg. Average Average Average
shortest # of # of Initial First Last

Method # Arcs paths Its Its Solution Solution Solution

4, a 500 45.91 15 7.56 1405 1090 213
250 42.73 13 7.26 2863 2140 419
125 41.88 18 6.88 5053 3689 904

62 29.45 9 4.71 8394 6341 3537

4, b 500 66.17 17 11.51 1013 914 212
250 58.83 16 10.16 1156 1068 428
125 50.79 14 8.31 1588 1478 902

62 30.06 10 4.27 4410 4061 3537

4, c 500 36.37 12 5.66 280 265 213
250 36.42 12 5.63 549 521 421
125 32.81 10 4.98 1085 1040 897

62 24.73 8 3.31 3728 3649 3536

4, dl 500 21.26 10 3.11 234 224 212
250 20.28 7 2.92 457 440 423
125 20.38 7 2.95 977 941 903

62 16.83 7 2.10 3608 3569 3536

4, d2 500 21.73 10 2.80 231 222 213
250 21.19 9 2.84 460 442 425
125 21.12 12 2.75 965 930 900

62 19.35 8 2.17 3620 3572 3533

Fig. 15. Computational results for Algorithm 4.

CONCAVE-COST NETWORK FLOW 263

increases, the probability of a low cost solution existing between the source and
any sink increases.

All of the algorithms we employed are based on solving shortest path problems.
Our current implementation does not exploit network sparseness, indicating that
processing time is not an accurate measure for our results on sparse networks. In
order to present our results in an implementation independent manner, we use
the number of shortest path problems solved to compare the alternate techniques.
To provide an indication of performance in terms of processing time, we provide
times for several complete networks in Figure 16. These times are for the various
algorithms (with the number of sinks 10) executed on a single T800 Transputer.
The T800 is an INTEL manufactured 32-bit microprocessor designed to facilitate
parallel processing.

Figures 12 through 15 indicate a subset of several thousand test cases executed
to establish the effects of varying the initial solution technique and the local
search technique. From these results we have observed the following:

1. Gallo and Sodini’s results (Algorithm 1 and initial solution technique a)
indicated a large improvement resulting from applying local search [5]. Our
results demonstrate that this improvement is primarily due to the poor initial
solutions resulting from the initial solution technique. In fact, technique a
provided the poorest initial solutions when compared to the other six
techniques considered.

2. In all the test cases, the maximum number of vertices examined during local
search with initial solution techniques c and d was 20. This includes test
cases with 100 nodes and 9900 arcs. This indicates a similarity between the
performance of the Simplex method for linear programming and local search
for the SSU MCNFP.

3. The initial solution techniques had little effect (on the average) on the
objective function of the detected local optimum. This is surprising as the
magnitude of the initial solutions varied significantly.

4. The initial solution techniques did have an effect on the convergence rate to
a local optimum. This is especially evident when comparing techniques a, b,
and c to the others.

5. The algorithms moving to the first better adjacent vertex (2 and 4) required
on the average 25-40% fewer shortest path problems to be solved.

Method 121132
Nodes/Arcs
25/600 5012450 100/9900

l,d2 1.09
2, d2 0.76
3,dZ 1.14
4, d2 0.81

Fig. 16. Timing results (seconds).

5.63 29.46 112.38
4.28 21.48 88.10
5.22 27.73 77.75
3.55 16.09 53.07

264 G. M. GUISEWITE AND P. M. PARDALOS

Layers Algorithm 1, d2 Algorithm 3, d2

5 25.8 14.3
10 40.3 16.7
20 70.4 21.7

Fig. 17. Processing comparison for layered graphs (average number of shortest weighted
path problems solved).

6. The algorithms based on the relaxed search technique (3 and 4) required on
the average 7-40% fewer shortest path problems to be solved. The cases
with similar performance arise for initial solution technique d. The variation
in performance will increase substantially for layered networks, as the
random graphs for our test cases tend to have solutions with few transship-
ment nodes. This is demonstrated in Figure 17 where layered graphs with 5
nodes per layer and full interconnection between layers are solved using
Algorithms 1 and 3. In these graphs the first layer consists solely of the
source node, and each layer i is fully connected to layer i + 1. It should be
noted that the processing time for each iteration of relaxed search is larger.
This is due to the additional processing required to convert nonextreme
solutions to extreme solutions after the shortest path problems are solved.

7. Two of the initial solution techniques (d2 and d4) found local optima a
significant portion of the time (20-40%) for sparse problems.

8. Network density had only a slight effect on the number of iterations required
for local search, especially for initial solution techniques c and d.

These results indicate that local search techniques for the SSU MCNFP are
computationally efficient. The surprising results are how efficient several initial
solution techniques are at computing low cost solutions, and how little effect the
initial solution technique has on the final solution’s objective value. Another
surprising result is the efficiency of local search (in terms of vertices visited) on
dense networks. In addition, even though the relaxed local search algorithm
computes a local optimum over a larger neighborhood than the Gallo and Sodini
approach, the observed processing requirements for the relaxed approach are
lower in most cases.

5. Summary

We have provided new complexity and computational results for the SSU
MCNFP. We have shown that a wide range of these problems fall into the realm
of NP-hard problems. We presented a formal description of the Gallo and Sodini
[5] algorithm for local search. We also developed alternative local search al-
gorithms, and implemented them for performance comparison. These results
indicate that a substantial performance improvement can be obtained for local
search by applying our relaxed algorithm, and by using greedy-based initial

CONCAVE-COST NETWORK FLOW 265

solution techniques. In addition, the presented algorithms are all amenable to a
parallel solution. Each iteration involves the solution of multiple disjoint shortest
weighted path problems that can be distributed across processors. These results
indicate that the presented approach can be applied to the solution of large
single-source uncapacitated minimum concave-cost network flow problems.

References

1. Dantzig, G. B. (1963), Linear Programming and Extensions, Princeton University Press, Prince-
ton, New Jersey.

2. Denzler, D. R. (1969), An Approximate Solution for the Fixed Charge Problem, Naval Research
Logistics Quarterly 16, 411-416.

3. Eggleston, H. G. (1963), Convexity, Cambridge Tracts in Mathematics and Muthemuticul Physics
No. 47, Cambridge University Press, Cambridge, Mass.

4. Erickson, R. E., Monma, C. L., and Veinott, Jr., A. F. (1987), Send-and-Split Method for
Minimum-Concave-Cost Network Flows, Mathematics of Operations Research 12(4), 634-664.

5. Gallo, G. and Sodini, C. (1979), Adjacent Extreme Flows and Application to Min Concave-Cost
Flow Problems, Networks 9, 95-121.

6. Garey, M. R. and Johnson, D.S. (1979), Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, San Francisco, CA.

7. Guisewite, G. M. and Pardalos, P. M. (1990), Uncapacitated Single-Source Minimum Concave-
Cost Network Flow Problem, Working Paper, Department of Computer Science, Pennsylvania
State University.

8. Guisewite, G. M. and Pardalos, P. M. (1990), Minimum Concave-Cost Network Flow Problems:
Applications, Complexity, and Algorithms, Annals of Operations Research 28, 75-100.

9. Lozovanu, D. D. (1983), Properties of Optimal Solutions of a Grid Transport Problem with
Concave Function of the Flows on the Arcs, Engineering Cybernetics 20, 34-38.

10. Pardalos, P. M. and Rosen, J. B. (1987), C onstruined Global Optimization; Algorithms and
Applications, Lecture Notes in Computer Science 268, Springer-Verlag, Berlin.

11. Pardalos, P. M. and Schnitger, G. (1988), Checking Local Optimality in Constrained Quadratic
Programming is NP-Hard, Operutions Research Letters 7(l), 33-35.

12. Plasil, J. and Chlebnican, P. (1990), A New Algorithm for the Min Concave Cost Flow Problem,
Working paper, Technical University of Transport and Communications, Czechoslovakia.

13. Steinberg, D. I. (1970), The Fixed Charge Problem, Nuval Research Logistics Quarterly 17,
217-236.

14. Thach, P. T. (1989), An Efficient Method for Min Concave Cost Flow Problems Under Circuitless
Single-Source Uncapacitated Networks, Technical Report, Technical University of Graz, Austria:

15. Valiant, L. G. and Vazirani, V. V. (1985), NP Is as Easy as Detecting Unique Solutions, 17’th
STOC of the ACM, 458-463.

16. Wagner, H.M. (1960), A Postscript to ‘Dynamic Problems in the Theory of the Firm,’ Nuvul
Research Logistics Quarterly 7, 7-12.

17. Wagner, H. M. and Whitin, T. M. (1958), Dynamic Version of the Economic Lot Size Model,
Management Science 5(l), 89-96.

18. Walker, W. E. (1976), A Heuristic Adjacent Extreme Point Algorithm for the Fixed Charge
Problem, Management Science 22(5) 587-596.

19. Yaged, Jr. B. (1971), Minimum Cost Routing for Static Network Models, Networks 1, 139-172.
20. Zangwill, W. I. (1966), A Deterministic Multi-Period Production Scheduling Model with Backlog-

ging, Munugement Science 13(l) 105-119.
21. Zangwill, W. I. (1968), Minimum Concave-Cost Flows in Certain Networks, Management Science

14(7) 429-450.
22. Zangwill, W. I. (1969), A Backlogging Model and a Multi-Echelon Model of a Economic Lot Size

Production System - A Network Approach, Management Science E(9) 506-527.

